ANALISIS PERAMALAN PENJUALAN SINGKONG DENGAN APLIKASI POM-QM (STUDI PADA KELOMPOK PETANI MUDA DI KOTA TARAKAN)

Authors

  • Nurul Hidayat Universitas Borneo Tarakan
  • Eka Fitria Universitas Borneo Tarakan
  • Intan Purnama Sari Chandra Universitas Borneo Tarakan
  • Dhea Rizma Anada Universitas Borneo Tarakan
  • Renilda Cahyany Universitas Borneo Tarakan

DOI:

https://doi.org/10.29062/mahardika.v22i3.933

Keywords:

forecasting, moving average, exponential smoothing, weighted

Abstract

Indonesia is an agricultural country whose economy is largely dependent on the agricultural sector. Cassava or cassava, which has the Latin name Manihot esculenta crantz, is a tuber plant that contains lots of carbohydrates. Tarakan Young Farmers are one of the farmer groups who chose cassava to cultivate since the beginning of land clearing. Price fluctuations that often occur in cassava are caused by excessive harvesting and natural disasters such as floods due to rainy weather, including the appearance of fungus on cassava trees which causes a decline in the quality of cassava so that demand decreases. In this case, farmers can take advantage of technological developments, one of which is sales forecasting using analytical tools that can help and make it easier for cassava farmers to predict optimal cassava production so that farmers can reduce the risk of losses due to this. Excessive production compared to market demand. In this research, sales forecasting for the Tarakan Young Farmers group used three forecasting methods, namely the Single Moving Average, Weighted Moving Average and Single Exponential Smoothing methods. The results of sales forecasting for the next period using the best method, namely Single Exponential Smoothing with a = 0.1, is 4.913 Kg.

Downloads

Download data is not yet available.

References

Ahmad, F. (2020). PENENTUAN METODE PERAMALAN PADA PRODUKSI PART NEW GRANADA BOWL ST Di PT.X. JISI: Jurnal Integrasi Sistem Industri, 7(1), 31. https://doi.org/10.24853/jisi.7.1.31-39

Alitawan, A. A. I., & Sutrisna, I. K. (2017). Faktor-Faktor yang Mempengaruhi Pendapatan Petani Jeruk pada Desa Gunung Bau Kecamatan Kintamani Kabupaten Bangli. E-Jurnal Ekonomi Pembangunan Universitas Udayana, 6(5), 165350.

Aprilianti, N., Setiawan, I., & Yusuf, N. (2020). Peramalan Permintaan Produk Sale Pisang Pada Industri “Sahabat” Di Dusun Cijoho Desa Margajaya Kecamatan Sukadana Kabupaten Ciamis Forecasting Demand for Sale Banana Products in the “Sahabat” Industry in Cijoho Hamlet, Margajaya Village, Sukadana Subdistr. Jurnal Ilmiah, 7(2009), 634–642.

Azahra, N., Alifia, S. C., Andyka, N. P., Wijayanto, S., & Fathoni, M. Y. (2022). Peramalan Jumlah Produksi Tebu Menggunakan Metode Time Series Model Moving Averages. JURIKOM (Jurnal Riset Komputer), 9(4), 840. https://doi.org/10.30865/jurikom.v9i4.4388

Distribusi, D. S. (2022). Analisis Komoditas Ekspor 2017-2021. Badan Pusat Statistik. https://www.bps.go.id/publication/2022/07/06/280d543f68304d58371310b5/analisis-komoditas-ekspor-2017-2021--sektor-pertanian--kehutanan--dan-perikanan--industri-pengolahan--pertambangan-dan-lainnya.html

Maysofa, L., Syaliman, K. U., & Sapriadi. (2023). Implementasi Forecasting Pada Penjualan Inaura Hair Care Dengan Metode Single Exponential Smoothing. Jurnal Testing Dan Implementasi Sistem Informasi, 1(2), 82–91.

Mollah, M. K., & Saputra, A. D. (2022). Penerapan Peramalan Penjualan Menggunakan Aplikasi POM QM pada Produk Gula di PT. Pabrik Gula Candi Baru Sidoarjo. Seminar Nasional Teknologi Industri Berkelanjutan II (SENASTITAN II), 2, 449–458.

Rini, M. W., & Ananda, N. (2022). Perbandingan Metode Peramalan Menggunakan Model Time Series. Tekinfo: Jurnal Ilmiah Teknik Industri Dan Informasi, 10(2), 88–101. https://doi.org/10.31001/tekinfo.v10i2.1419

Wahyudi, W. (2022). Analisis Motivasi Belajar Siswa Dengan Menggunakan Model Pembelajaran Blended Learning Saat Pandemi Covid-19 (Deskriptif Kuantitatif Di Sman 1 Babadan Ponorogo). KadikmA, 13(1), 68. https://doi.org/10.19184/kdma.v13i1.31327

Downloads

Published

2024-05-30

Issue

Section

Articles